Section 4.1

Math 231

Hope College

Let X and Y be sets.

- A function *f* from *X* to *Y* is a rule which assigns one and only one element $f(x) \in Y$ to each element $x \in X$.
- **2** We denote a function *f* from *X* to *Y* by $f : X \to Y$.
- **③** The set X is called the **domain** of f. We write X = dom(f).
- The subset {y ∈ Y | y = f(x) for some x ∈ X} of Y is called the range or the image of f. We write the image of f as im(f).

Let *X* and *Y* be sets, and let $f : X \to Y$ be a function.

- *f* is called **surjective** if im(f) = Y.
- If is called injective if x₁, x₂ ∈ X and x₁ ≠ x₂ implies that f(x₁) ≠ f(x₂). Thus, f is injective if distinct inputs have distinct outputs.
- The statement that f is injective is equivalent to

for all $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

f is called **bijective** if it is both injective and surjective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Identity, Composition, Inverse, and Invertible

Let X, Y and Z be sets.

- The identity function $id_X : X \to X$ is the function defined by $id_X(x) = x$ for all $x \in X$.
- ② Given functions f: X → Y and g: Y → Z, the composition g ∘ f is the function g ∘ f : X → Z defined by g ∘ f(x) = g(f(x)) for all x ∈ X.
- **3** Given a function $f : X \to Y$, an **inverse function** for f is a function $f^{-1} : Y \to X$ such that $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$.
- If a function f has an inverse function f^{-1} , we say that f is an **invertible** function.

Theorem 4.3: A function is invertible if and only if it is bijective.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Linear Transformations

- Let *f* : *V* → *W* be a function from a vector space *V* to a vector space *W*. Then *f* is called a linear transformation if the following two conditions are satisfied:
 - For all $\mathbf{x}, \mathbf{y} \in V$, we have $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$.
 - **2** For all $\mathbf{x} \in V$ and $\alpha \in \mathbb{R}$, we have $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$.

• **Theorem 4.7:** Let *A* be an $m \times n$ matrix. Then *A* defines a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ by $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

Linear Transformations

- Let *f* : *V* → *W* be a function from a vector space *V* to a vector space *W*. Then *f* is called a linear transformation if the following two conditions are satisfied:
 - For all $\mathbf{x}, \mathbf{y} \in V$, we have $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$.
 - 2 For all $\mathbf{x} \in V$ and $\alpha \in \mathbb{R}$, we have $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$.

• **Theorem 4.7:** Let *A* be an $m \times n$ matrix. Then *A* defines a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ by $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

Linear Transformations

- Let *f* : *V* → *W* be a function from a vector space *V* to a vector space *W*. Then *f* is called a linear transformation if the following two conditions are satisfied:
 - For all $\mathbf{x}, \mathbf{y} \in V$, we have $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$.
 - 2 For all $\mathbf{x} \in V$ and $\alpha \in \mathbb{R}$, we have $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$.

• **Theorem 4.7:** Let *A* be an $m \times n$ matrix. Then *A* defines a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ by $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

Moreover, given any linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$, there is an $m \times n$ matrix A such that $f(\mathbf{\vec{x}}) = A\mathbf{\vec{x}}$ for all $\mathbf{\vec{x}} \in \mathbb{R}^n$.